Byzantine Failure Detection for Dynamic Distributed Systems

Murilo Santos de Lima
Computer Science Department – Institute of Mathematics and Statistics
University of São Paulo (USP), Brazil
mslima@ime.usp.br

Fabiola Greve
Computer Science Department – Institute of Mathematics
Federal University of Bahia (UFBA)
fabiola@dcc.ufba.br

UFBA – DCC – Technical Report 06.09

Abstract

Byzantine failure detectors provide an elegant abstraction for solving security problems. However, as far as we know, there is no general solution for this problem in a dynamic distributed system. This paper presents thus a first Byzantine failure detector for this context. The protocol has the interesting feature to be asynchronous, that is, the failure detection process does not rely on timers to make suspicions. This characteristic favors its scalability and adaptability and leads to an intriguing conjecture about the pattern of the overlying algorithm that uses the failure detector as a building block: it should be symmetrical.

1 Introduction

Modern distributed systems, structured over Mobile Ad-Hoc Networks (MANETs), sensor and P2P networks are inherently dynamic [1]. They are composed by a dynamic population of nodes, which randomly join and leave the network, at any moment of the execution. Usually, these systems present the following restrictions: (i) the message transmission latency is unpredictable; (ii) the network is not fully connected; (iii) there is an absence of centralized entities; (iv) it is not possible to provide nodes with a global view of the network topology, so that each node has a partial knowledge of the system composition; and (v) the nodes may change their location on the network. Therefore, classical distributed protocols are no longer appropriate for this new context, since they make the assumption that the whole system is static and its composition is previously known.

Security is a major problem on dynamic distributed systems. The dynamic population of nodes and the use a wireless network or the Internet as a communication media favors the action of malicious agents on the system. The Byzantine failure model [2] deals with security problems by tolerating the presence of corrupted processes, which may behave in an arbitrary manner, trying to hinder the system to work accordingly to its specification. For example, a Byzantine process could try to assume the identity of another process, send incorrect values, duplicate messages or just do not send messages required by the protocol under execution. Thus, Byzantine fault tolerance plays an important role on the development of dependable dynamic distributed systems.

The unreliable failure detector abstraction [3] (or FD) provides a modular approach to deal with failures on asynchronous systems. It exempts the overlying protocol to deal with the failure treatment and synchrony requirements, so that it can just take care about its inherent task. For example, the consensus problem [4] summarizes many distributed agreement problems but cannot be solved in a system without synchrony.
requirements, even if one single process crashes [5]. If the system is augmented, though, with a $\diamond S$ failure detector [3], the consensus with crash failures can be solved without managing directly the synchrony requirements.

Most FD implementations suppose a static network with a previously known composition of nodes [6]. Some recent work has been proposed for the implementation of FD on mobile and self-organizing networks [7, 8], the former supposing a dynamic population, and the latter managing mobility. All of those protocols, though, rely on timers to make suspicions, i.e., a node monitors the others through the exchange of heartbeat messages. This strategy is not very adequate for a dynamic system due to its unpredictable message transmission latencies and frequent changes in topology.

Asynchronous FD do not rely on timers to make suspicions. This concept has been suggested by Mostefaoui et al. but for the context of static networks [9]. In [10], Sens et al. extended that purpose for systems with dynamic populations and node mobility. All of those works, though, deal only with crash failures, and in this case, processes behave in a benign manner until they fail and finish their execution. The almost totality of Byzantine FD suppose a static network of known participants. Some few exceptions are [11, 12], but they solve only a subset of the properties of the Byzantine failure detection problem. Moreover, as soon as we know, all of the Byzantine FDs proposed so far are timer-based [13, 14].

This paper studies the problem of Byzantine failure detection and presents a Byzantine failure detector with two innovative features: (i) it is suitable for a dynamic distributed system with unknown participants and (ii) it is asynchronous: it does not rely on timers to detect progress failures. The FD protocol is based on the approach of Kihlstrom et al. [13] for the Byzantine failure detection and the approach of Sens et al. [10] for the asynchronous detection. Commission (or security) failures are detected through the use of a standard message format, including signatures and certificates. Omission failure detection is based on the message exchange pattern of the overlying algorithm, because Byzantine failures are defined as deviation from the behavior specified by the algorithm [15]. The asynchronous detection is possible due to the message exchange pattern, to the network topology assumptions and to certain behavioral properties followed by the nodes on the system. The protocol does not manage, though, node mobility.

The asynchronous detection choice has put into evidence two important results. First, we conjecture to be impossible to design asynchronous Byzantine fault-tolerant distributed algorithms without a distributed message exchange pattern between processes. Second, we infer that the use of the local broadcast primitive as the communication standard, typical from wireless channels, simplifies the security failure management, so that some classes of failures (e.g., mutant messages) cannot occur.

The rest of the paper is structured as follows: Section 2 provides the system model. Section 3 provides a characterization of Byzantine failures. Sections 4-6 present the FD protocol, some behavioral properties the system must obey so that the protocol works correctly and its implementation. The correctness proofs may be found at Section 7. Finally, Section 8 concludes the paper and provides future work.

2 System Model

The distributed system is composed by a set $\Pi = \{p_1, p_2, \ldots, p_n\}$ of $n > 4$ processes. Nodes may join or leave the network randomly, at any moment of the execution. No restrictions are made about processor speeds, relative clock drifts or message transmission delays; that is, the system is asynchronous. Processes are subject to Byzantine failures; thus, nodes may behave in an arbitrary, even malicious, manner; yet the system is equipped with a message authentication mechanism. Processes have no knowledge about Π or n; but, they know a subset of Π, composed with nodes with whom they previously communicate. The expected maximum number of processes that may fail is denoted by f and it is known by every node. In order to simplify definitions and proofs, we consider the existence of a global time t, nonetheless t is unknown to the processes. Every process is uniquely identified, and a faulty process cannot obtain more than one identifier. Thus, it is impossible to launch a sybil attack [16].

The processes communicate by local broadcast through a wireless communication network. Channels
are reliable, so that a message sent is eventually received by every correct process in the neighborhood of its sender. Moreover, channels do not duplicate, modify or create messages and every correct process signs its messages in an unforgeable manner. Implementations of reliable broadcast communication in wireless networks may be found at [17, 18].

The system may be represented by an undirected graph $G(V, E)$, where $V = \Pi$ and $\{p_i, p_j\} \in E$ if and only if p_i and p_j are in the transmission range of each other (p_i and p_j are called neighbors). The range of a node p_i is defined by the set $\text{range}_i := \{p_j \in \Pi : (p_i, p_j) \in E\}$. Note that range_i corresponds to the neighborhood of p_i in G, $|\text{range}_i|$ is the degree of p_i in G and $p_i \in \text{range}_j \iff p_j \in \text{range}_i$. That is, the communication between the nodes is symmetrical.

Definition 1 (Range density (d)) The density d of a communication graph $G(V, E)$ is the size of the smallest range in the network, that is: $d := \min \{|\text{range}_i| : i \in \{1, 2, ..., n\}\}$. d is therefore the minimum degree in the graph G.

We suppose the network parameter d is known by every process.

Definition 2 (Network with Byzantine f-coverage) A communication network represented by a graph $G(V, E)$ has Byzantine f-coverage if and only if G is $(f+1)$-connected and $d \geq 2f + 1$.

A k-connected graph has k vertex-disjoint paths between every two vertices, what leads to the following observation:

Observation 1 In a network with Byzantine f-coverage, despite the presence of $f < n$ faulty processes, there is at least one path formed exclusively by correct nodes between every two correct nodes.

3 Byzantine Failures

Byzantine failures are identified by the meeting of two requirements: (i) correct processes must have a coherent view of the messages sent by every process; (ii) correct processes must be able to verify if a message is consistent with the requirements of the algorithm in execution. Thus, Byzantine failure detection is defined as a function of some algorithm or protocol. The first requirement may be addressed by two distinct techniques: information redundancy or unforgeable digital signatures [2]. The second requirement can be met by adding certificates to the messages, so that its content may be validated [13].

Figure 1 shows the Byzantine failure categorization by Kihlstrom et al. [13]. Two superclasses are distinguished: detectable, when the external behavior of a process provides evidence of the failure and non-detectable, otherwise. Non-detectable failures are grouped in unobservable, when other processes cannot perceive the occurrence of a failure (e.g., when a faulty process informs a parameter different from the supplied by the user) and undiagnosable, when it is not possible to identify the perpetrator of failure (e.g., the processes receive an unsigned message).

![Figure 1: Byzantine failure categorization [13]](image-url)
Detectable failures are classified in *progress (or omission)* failures and *security (or commission)* failures. Progress failures hampers the termination of the computation, since a faulty process does not send the messages required by its specification or sends it only to part of the system. Security failures violate invariant properties to which processes must obey, and can be defined as the noncompliance of one of the following restrictions: (i) a process must send the same messages to every other (a faulty process could, thus, send a message with different data to different processes); (ii) the messages sent must conform the algorithm under execution.

Failure Detector Properties. Kihlstrom *et al.* [13] define Byzantine failure detector classes which differ from those described by Chandra and Toueg [3], since the latter deals only with crash failures. Let \mathcal{A} be an algorithm that uses the failure detector as a underlying module.

The class $\diamond\mathcal{S}(\text{Byz}, \mathcal{A})$, the focus of this work, is defined by the following properties:

(i) *Strong Byzantine completeness* (for algorithm \mathcal{A}): eventually, every correct process suspects permanently every process that has detectably deviated from \mathcal{A};

(ii) *Eventual weak accuracy*: eventually, one correct process is never suspected by any correct process.

4 Basic Principles of an Asynchronous Byzantine Failure Detector

In this section the fundamental principles of our asynchronous Byzantine failure detector are presented.

4.1 Message Exchange Pattern

Most of the protocols for crash failure detection are based on the exchange of heartbeat messages. Nevertheless, in a Byzantine environment, due to the occurrence of malicious processes, such a mechanism is no longer enough. A faulty process may correctly answer the failure detector messages, yet without guaranteeing progress and safety to the algorithm under execution. Therefore, the failure detection must be based on the pattern of the messages sent during the execution of algorithm \mathcal{A} that uses the failure detector. Thus, similarly to Kihlstrom’s strategy [13], suspicions are raised in function of the messages required by \mathcal{A}. Nonetheless, differently from it, such suspicions are identified asynchronously, without the use of timers to detect omission failures. Moreover, the failure detection follows a local message exchange pattern, i.e., between the nodes in the neighborhood.

To implement the asynchronous failure detection, a process must wait for the reception of a message from at least $(d - f)$ different senders. The number $(d - f)$ corresponds to the minimum amount of correct nodes in the neighborhood of a node in the system. This approach follows Sens *et al.* [10]. Notice though that a faulty process may send RESPONSE messages without respecting the progress requirements of algorithm \mathcal{A}. Thus, the QUERY-RESPONSE message pattern on which Sen’s protocol is based is not adequate to a Byzantine environment.

Our protocol, thus, raises suspicions based on the exchange of messages required by algorithm \mathcal{A}. So, a process will wait until the reception of messages required by \mathcal{A} from at least $(d - f)$ distinct senders and it will suspect an omission faulty from the remaining processes. It is important to notice that, in order to enable suspicions, the communication pattern followed by algorithm \mathcal{A} must be distributed. That is, at every step, all nodes must exchange messages, following a $n \rightarrow n$ pattern. So, the protocol followed by \mathcal{A} should be symmetrical. Since the detector uses a local message exchange pattern, this symmetrical communication must occur at least between processes in the same range. Symmetrical consensus algorithms based on a $\diamond\mathcal{S}$ failure detectors have been proposed [19].

Another important point to consider is that the detection follows an asynchronous pattern. As suspicions are based on the message exchange pattern of the algorithm, we conjecture to be impossible to detect omission failures if such a pattern is in the form $1 \rightarrow n$. That is, if at any moment of the algorithm execution, only one process is required to send messages. Otherwise, one could not distinguish an omission failure from a
delay on the delivering of the message from that process, since the underlying system is asynchronous [3]. Thus, we identify the following conjecture, and if it is correct, it derives the following corollary.

Conjecture 1 In an asynchronous system, it is not possible to detect Byzantine omission failures in an asynchronous manner, if the message exchange pattern on the algorithm A is $1 \rightarrow n$; that is, if algorithm A requires a single process to send messages to the remaining (n).

Corollary 1 The asynchronous mode of Byzantine failure detection may only be adopted by symmetrical protocols, on which all nodes execute the same role.

4.2 Suspicion and Mistake Generation

Suspicion Generation. Every suspicion on a process p_i is related to a message m required by A. Thus, messages must have unique identifiers. Suspicions are propagated on the network and a correct process will adopt a suspicion not generated by itself if and only if it receives it properly signed from at least $f + 1$ different senders. This requirement, of at least $f + 1$ messages, denies a malicious process to impose suspicions on correct processes. Figure 2 shows this mechanism for a portion of the network, supposing $f = 1$. The neighbors of a process p_1, faulty by omission, detect that p_1 is not sending the messages it should. In a network with Byzantine f-coverage, at least two ($f + 1$) neighbors of p_1, in this case p_2 and p_3, are correct and shall spread a suspicion of failure S to their respective neighbors. There is a path formed only by correct processes between any correct process (e.g., p_{10}) and p_2 ($p_{10}p_9 \cdots p_5p_2$) and p_3 ($p_{10}p_3$) (see Observation 1), so that it receives at least two ($f + 1$) occurrences of S and may adopt the suspicion.

![Figure 2: Suspicion generation on the proposed protocol ($f = 1$)](image)

Mistake Generation. Let p_i be a process that has been suspected of not sending a message m. If eventually a correct process p_j receives m from p_i, p_j will declare a *mistake* on the suspicion and will spread m to the remaining nodes, so that they can do the same. At Figure 3, a slow process p_1, about which a suspicion had been raised, sends the required message m (represented by the envelope) to a correct process p_2. In a network with Byzantine f-coverage, there will be at least one path formed only by correct processes between p_2 and every correct process. For example, for p_{10}, we have the path $p_2p_5 \cdots p_9p_{10}$. Then p_{10} (or any other correct process) will receive m and will be able to remove the related suspicion.

This behavior allows a malicious process to provoke a suspicion and revoke it continuously, masking part of the omission failures and degrading the failure detector performance. Nevertheless, it is not possible to distinguish that situation from the slowness of a process or an instability on the communication channel.

4.3 Security Failure Detection

In order to enable the security failure detection, a message format must be established. Every message must also include a certificate that enables other processes to verify its coherence with algorithm A. If a
Figure 3: Mistake generation on the proposed protocol ($f = 1$)

correct process detects the non validity of a received message, either for not obeying to the format or for incorrect justification, it will permanently suspect the sender and will forward the message to the remaining processes, so that the suspicion is propagated. Figure 4 represents that situation: a faulty process p_1 commits a security failure by spreading a corrupted message m (represented by the asterisk). The failure is detected by the correct neighbor p_2, who forwards the corrupted message to the remaining of the network. Since there is a path formed only by correct processes between p_2 and every correct process (for p_{10}, e.g., the path $p_{10} p_9 \cdots p_5 p_2$), all of them will suspect permanently on p_1.

Figure 4: Security failure detection on the proposed protocol ($f = 1$)

In our protocol, suspicions, mistakes and security failure proofs are forwarded through a single message of the type SUSPICION, which does not need to be certified. Unsigned messages are discarded, as they configure an undiagnosable failure (see Section 3). Then, the detector does not commit errors in the security failure detection for algorithm A.

Notice that it is also necessary to detect mutant messages. This anomaly happens when a process sends two or more different versions of the same message. In their protocol, Kihlstrom et al. [13] deals with this problem by requiring correct processes to forward every received message. Moreover, processes should maintain a history of messages received by every process. Their model suppose, though, a point-to-point communication. In our model, processes communicate only through local broadcast in reliable channels. Thus, we can certainly suppose that a message broadcast will be received with equal content by every correct process, so that it is impossible to send mutant messages. This leads to the following conclusion.

Observation 2 In a Byzantine failure environment, the communication by broadcast on reliable channels simplifies the security management, since the neighbors of a sender have a consistent view of the messages sent.
5 Behavioral System Properties

In order to implement the Byzantine failure detector, in an asynchronous manner, some assumptions about the system behavior should be made.

Property 1 (Byzantine Membership Property \((\text{ByzMP})\)) Let \(t\) a moment in time and \(KB_t^i\) the set of nodes that received a SUSPICION message from \(p_i\) until \(t\). A process \(p_i\) satisfies the Byzantine membership property \(\text{ByzMP}\) if:

\[\text{ByzMP}(p_i) := \exists t \geq 0 : |KB_t^i| \geq 2f + 1 \]

This property ensures that a new process \(p_i\) will eventually be known by at least \(2f + 1\) processes, from which at least \(f + 1\) will be correct. Therefore, \(p_i\) has to communicate with at least \(2f + 1\) nodes in its range, sending them a SUSPICION message by broadcast. Then, if \(p_i\) fails, eventually at least \(f + 1\) correct processes will suspect \(p_i\) and spread the suspicion to the remaining of the system, so that the Byzantine strong completeness property of \(\diamond S(\text{Byz}, A)\) detector is satisfied. Note that such communication must be done before the next step of algorithm \(A\); before that, \(p_i\) must not be considered as participant of the computation. If a new process does not communicate with any other, it is impossible to satisfy weak completeness [20].

In order to satisfy eventual weak accuracy property of \(\diamond S(\text{Byz}, A)\) class, there must exist a correct process \(p_i\) whose messages from some point on are always among the first \(d - f\) received by its neighbors, at every request of \(A\). Thus, eventually \(p_i\) will no longer be suspected by any correct process, and any previous suspicion will be revoked through mistake messages. Thus, the network must exhibit a correct process that satisfies the Byzantine responsiveness property, defined as:

Property 2 (Byzantine Responsiveness Property \((\text{ByzRP})\)) Let \(t\) and \(u\) moments in time and \(\text{rec}\) from \(t_j\) the set with at least \(d - f\) processes from which \(p_j\) received the message required by \(A\) at the last step in execution until \(t\). The \(\text{ByzRP}\) property of the correct process \(p_i\) is defined as:

\[\text{ByzRP}(p_i) := \exists u : \forall t > u, \forall p_j \in \text{range}_i, p_i \in \text{rec}\) from \(t_j \]

6 Asynchronous Byzantine Failure Detector for Dynamic Systems

Algorithms 1 and 2 implement a \(\diamond S(\text{Byz}, A)\) failure detector, as soon as the network satisfies Byzantine \(f\)-coverage, Byzantine membership and Byzantine responsiveness properties described previously, and the protocol executed by algorithm \(A\) is symmetrical. A sketch of the correctness proofs may be found at Section 7.

Every process executes three parallel tasks, described below. The variables, primitives and procedures used by each process \(p_i\) are described afterwards.

T1. Generating new suspicions (lines 5-14, Algorithm 1). When algorithm \(A\) requires the processes to exchange a message \(m\) (line 6), every process \(p_i\) waits until the reception of \(m\) from at least \(d - f\) neighbors, whose identifiers are stored in the set \(\text{rec}\) from \(t\) (lines 7-8). For the remaining processes known by \(p_i\), it adds an internal omission failure suspicion (lines 9-11). Then every message has its format and certificates verified (lines 12-14, Algorithm 1, and 5-16, Algorithm 2). Incorrect messages lead to security failure suspicions (lines 9-10, Algorithm 2) and update the detector output; correct messages generate mistakes on possible omission failure suspicions (lines 12-13, Algorithm 2).

T2. Receiving SUSPICION messages and messages from slow processes (lines 16-18, Algorithm 1). Since the messages sent by a slow process may be received after suspicion generation on its neighbors, we need to identify such events separately, what is done by this task. The messages are treated similarly to task T1. The treatment of SUSPICION messages will be explained below.
Algorithm 1: Asynchronous Byzantine Failure Detector for Dynamic Distributed Systems

1: **init:**
2: \(output_i \leftarrow known_i \leftarrow \emptyset; \ extern_susp_i \leftarrow []\)
3: \(intern_susp_i \leftarrow mistake_i \leftarrow []; byzantine_i \leftarrow \emptyset\)
4:
5: **Task T1:** /* generating new suspicions */
6: **when** \(p_i\) requires a message \(m\) **do**
7: **wait until** receive \(m\) properly signed for the first time from at least \((d - f)\) distinct processes
8: \(rec_from_i \leftarrow \{p_j \mid p_i\) received a message from \(p_j\) at line 7\}
9: **for all** \(p_j \in (known_i \setminus rec_from_i)\) **do**
10: AddInternalSusp(\(p_j, m\))
11: **end for**
12: **for all** \(m_j\) received at line 7 **from** \(p_j\) **do**
13: ValidateReceived(\(p_j, m_j\))
14: **end for**
15:
16: **Task T2:** /* receiving the internal state of another process or messages from slow process */
17: **upon receipt of** \(m\) properly signed **from** \(p_j\) **do**
18: ValidateReceived(\(p_j, m\))
19:
20: **Task T3:** /* broadcasting suspicion state */
21: **loop**
22: broadcast \(\langle SUSPICION, byzantine_i, mistake_i, intern_susp_i, extern_susp_i \rangle\)
23: **end loop**
24:
25: /* AUXILIARY PROCEDURES */
26: **procedure** AddInternalSusp(\(q, m\)):
27: \(intern_susp_i[q] \leftarrow intern_susp_i[q] \cup \{m.id\}\)
28: \(output_i \leftarrow output_i \cup \{q\}\)
29:
30: **procedure** AddExternalSusp(\(q, idm, ps\)):
31: \(extern_susp_i[q][idm] \leftarrow extern_susp_i[q][idm] \cup \{ps\}\)
32: **if** \(|extern_susp_i[q][idm]| \geq f + 1\) **then**
33: AddInternalSusp(\(q, message(idm)\))
34: **end if**
35:
36: **procedure** AddMistake(\(q, m\)):
37: \(mistake_i[q] \leftarrow mistake_i[q] \cup \{m\}\)
38: \(extern_susp_i[q][m.id] \leftarrow \emptyset\)
39: \(intern_susp_i[q] \leftarrow intern_susp_i[q] \setminus \{m.id\}\)
40: **if** \(intern_susp_i[q] = \emptyset\) **and** \(\not\exists (q, -) \in byzantine_i\) **then**
41: \(output_i \leftarrow output_i \setminus \{q\}\)
42: **end if**
Algorithm 2 Asynchronous Byzantine Failure Detector for Dynamic Distributed Systems (continuing)

1: procedure AddByzantine(q, m):
2: output_i ← output_i ∪ {q};
3: byzantine_i ← byzantine_i ∪ {{q, m}}
4:
5: procedure ValidateReceived(q, m):
6: if m was sent directly by q then
7: known_i ← known_i ∪ {q}
8: end if
9: if m is not properly formed or m is not properly justified then
10: AddByzantine(q, m)
11: else
12: if m.id ∈ intern_susp_i[q] or m was forwarded then
13: AddMistake(q, m)
14: end if
15: UpdateSuspicions(q, m)
16: end if
17:
18: procedure UpdateSuspicions(q, m):
19: if m = ⟨SUSPICION, byzantine_q, mistake_q, intern_susp_q, extern_susp_q⟩ then
20: for all px ∈ keys(extern_susp_q) do
21: for all idm_x ∈ keys(extern_susp_q[px]) properly signed | idm_x ∉ ids(mistake_i[px]) do
22: for all py ∈ extern_susp_q[px][idm_x] do
23: AddExternalSusp(px, idm_x, py)
24: end for
25: end for
26: end for
27: for all px ∈ keys(intern_susp_q) do
28: for all idm_x ∈ intern_susp_q[px] properly signed | idm_x ∉ ids(mistake_i[px]) do
29: AddExternalSusp(px, idm_x, q)
30: end for
31: end for
32: for all px ∈ keys(mistake_q) do
33: for all mx ∈ mistake_q[px] properly signed do
34: ValidateReceived(px, mx)
35: end for
36: end for
37: for all ⟨px, mx⟩ ∈ byzantine_q | mx is properly signed do
38: ValidateReceived(px, mx)
39: end for
40: end if
T3. Broadcasting suspicions and mistakes (lines 20-23, Algorithm 1). This task is executed periodically to send to p_i's neighbors its view on (internal and external) suspicions, mistakes and security failure proofs. The neighbors of p_i will receive that message in task T2 and will treat it as follows:

Updating internal state (lines 15 and 18-40, Algorithm 2). Upon the receipt of a SUSPICION message from a neighbor q (line 19), a process p_i updates its internal state with new information. Internal and external suspicions from q are added to the external suspicion set of p_i (lines 20-31), possibly generating new internal suspicions (lines 32-34, Algorithm 1). Note that a security failure suspicion will be raised on q (lines 9-10) if the SUSPICION message m is malformed or unjustified. Mistake information and security failure proofs are treated similarly to messages received directly from the sender (lines 34 e 38). Some optimizations in this procedure had been removed from this version of the protocol, in order to simplify demonstrations. The interested reader may find them at [21].

VARIABLES:
- $output_i$: stores the failure detector output, i.e., the set of identifiers of processes that p_i suspects of having failed;
- $known_i$: stores the set of processes that have communicated with p_i, i.e., its neighborhood. It is updated at the reception of SUSPICION messages or messages required by A;
- $extern_susp_i$: matrix that stores external suspicions (generated by other processes). The matrix is indexed by a process identifier q and a message identifier idm. Every entry stores the set of processes from which p_i has received suspicions about q and message(idm);
- $intern_susp_i$: array of internal suspicions. An internal suspicion is generated by not receiving a message required by A or by the presence of at least $f + 1$ external suspicions on a pair process-message;
- $mistakes_i$: array that stores, for every applicable process p_j, the set of mistakes related to p_j. A mistake is stored as a message required by A about which a suspicion has been raised;
- $byzantine_i$: set of tuples in the form $⟨p, message⟩$ that prove Byzantine behavior on the related process. The notation $⟨p, −⟩$ means “any tuple related to process p”;
- rec_from_i: set of processes from which p_i received the message required by A.

PRIMITIVES:
- $m.id$: returns the identifier of message m;
- $message(idm)$: returns the message bound to identifier idm;
- verifying if a message is well-formed, justified (certified content) and signed;
- request by A of a message;
- broadcast m: broadcasts a message m to the neighbors of p_i;
- $keys(v)$: returns the index set of a dynamic array v;
- $ids(s)$: returns the set of identifiers bound to the messages at set s.

AUXILIARY PROCEDURES:
- AddInternalSusp(q, m) (lines 26-28, Algorithm 1): adds an internal suspicion on process q and message m;
- AddExternalSusp(q, idm, p_s) (lines 30-34, Algorithm 1): adds an external suspicion from p_s about process q and message identified by idm. Also, if there are at least $f + 1$ external suspicions about q and message(idm), generates a corresponding internal suspicion, if not already present;
- AddMistake(q, m) (lines 36-42, Algorithm 1): adds a mistake on a previous suspicion about process q and message m, removing any corresponding internal or external suspicions. If q has no other suspicions and has not presented Byzantine behavior, removes q from the failure detector output;
- AddByzantine(q, m) (lines 1-3, Algorithm 2): adds q permanently to the list of Byzantine processes (and, consequently, to the FD output), along with the message m as a proof of the Byzantine failure;
- ValidateReceived(q, m) (Algorithm 2, lines 5-16): verifies if the message m received from q is valid (well-
formed and justified), removing any suspicions related to the pair \((q, m)\) in the affirmative case, otherwise generating a security failure suspicion. Also, updates the set of nodes known by \(p_i\) (\(\text{known}_i\)) and forwards the messages to the following procedure, in order to update the suspicion state:

- UpdateSuspicions\((q, m)\) (Algorithm 2, lines 18-40): if \(m\) if of the type SUSPICION, updates the internal state of \(p_i\) with the information in \(m\).

7 Correctness Proof

To implement a failure detector of class \(\Delta S(\text{Byz}, \mathcal{A})\), the algorithm in Section 6 should satisfy the Byzantine strong completeness and the eventual weak accuracy properties. In the following, a sketch of the correctness proofs of the algorithm is given.

7.1 Byzantine Strong Completeness

Lemma 1 If a process \(p_i\) never send message \(m\), then a correct process will never execute AddMistake\((p_i, m)\).

Proof: Assume, by contradiction, that some correct process \(p_j\) executes AddMistake\((p_i, m)\). Notice that AddMistake() is only invoked into procedure ValidateReceived() (line 13, Alg. 2). The procedure ValidateReceived() is for its turn invoked in 3 cases: (1) on the reception of messages required for \(\mathcal{A}\) on task T1 (line 13, Alg. 1) and task T2 (line 18, Alg. 1); (2) on the reception of SUSPICION messages on task T2 (line 18, Alg. 1); (3) on the update of the internal state with information from the neighbors (execution of UpdateSuspicions(), lines 34 e 38, Alg. 2). In all cases, the authentication of message \(m\) is properly verified (lines 7 and 17, Alg 1; lines 33 and 37, Alg. 2, in respective). From this fact and since channels are reliable, a faulty process \(p_j\) cannot send \(m\) in the place of \(p_i\). The occurrence of case (2), specifically, could not lead to a call to AddMistake(), since there is no suspicion related to messages SUSPICION. Moreover, correct SUSPICION messages are not forwarded.

Finally, we conclude that in all cases there is a contradiction, since for \(m\) to be received, \(p_i\) should had sent it at some point in time. Thus, the lemma follows.

Lemma 2 Let \(p_i\) be an omission faulty process. Then, at some point in time, every correct process \(p_j \in \Pi\) will permanently include \(p_i\) in its output\(_j\) set.

Proof: Let \(m\) be the first message required by \(\mathcal{A}\) and not sent by \(p_i\). Let \(t\) be the moment in which \(\mathcal{A}\) requires \(m\) from \(p_i\). Let \(u\) be the first moment at which |\(KB^u_i\)| ≥ 2\(f\) + 1, knowing that |\(KB^u_i\)| comes from property 1. In fact, instant \(u\) exists due to the satisfaction of ByzMP. It is true that \(t \geq u\), because, before \(u\), \(p_i\) was not in the run (see Section 5). Two cases are possible.

CASE 1: \(p_j \in KB^t_i\). If this happens then \(p_j\) has received a message of type SUSPICION from \(p_i\) before time \(t\). Thus, \(p_i \in \text{known}_j\), according to the execution of lines 17-18, Alg.1 and 6-8, Alg. 2. Whenever the execution of \(\mathcal{A}\) requires \(m\), \(p_j\) will wait until the reception of \(m\) from \(d - f\) distinct processes (lines 6-7, Alg. 1). This predicate will be satisfied at some point in time, since at most \(f\) processes are faulty and |\(range_j\)| ≥ \(d\). Since \(p_i\) did not send \(m\), \(p_j\) will not be included in \(\text{rec}_fro_m_i\) (line 8, Alg. 1). According to the execution of lines 9-11 and 27-28, Alg. 1, \(m\).id will be included in \(\text{intern_susp}_j[p_i]\) and \(p_i\) will be included in output\(_j\). Since \(p_i\) is faulty, it will never send \(m\) afterwards. Thus, from Lemma 1 and lines 39-42, Alg. 1, \(m\).id will never be removed from \(\text{intern_susp}_j[p_i]\) and \(p_i\) from output\(_j\).

CASE 2: If \(p_j \notin KB^t_i\). Since the network has Byzantine \(f\)-coverage, then there is at least a path \(P\), between \(p_j\) and each correct process \(p_k \in KB^t_i\) composed only by correct processes. Let us prove, by induction on the length of \(P\), that, at some point in time, \(p_k\) is added to \(\text{extern_susp}_j[p_i][m\).id\].

1. If |\(P\)| = 1 (\(P\) has length 1), then \(p_j\) is a neighbor of \(p_k\). In this case, at some point in time, \(p_k\) sends a SUSPICION message \(s\) (line 22, Alg. 1) with the authenticated information that \(m\).id ∈ \(\text{intern_susp}_k[p_i]\);
since channels are reliable, at some point, \(p_j \) receives \(s \) (in line 17, Alg. 1). Since \(p_k \) is correct, \(s \) is properly signed, formed and justified; from Lemma 1, \(m \notin \text{mistake}_{j}[p_i] \). Thus, from line 18, Alg.1 and lines 15 and 27-31, Alg. 2, \(p_k \) is added to \(\text{extern}_{\text{susp}_{j}}[p_i][m].id \) in line 31, Alg. 1 and the affirmation holds.

(2) If \(|P| > 1 \) (\(P \) has length greater than 1). We can assume by induction that the affirmation is true for the path \(P - p_j \) between \(p_k \) and a correct process \(p_i \), such that \(p_i \) and \(p_j \) are neighbors. By induction hypothesis, at some point in time, \(p_k \) is added to \(\text{extern}_{\text{susp}_{j}}[p_i][m].id \) and, afterwards, \(p_i \) send a SUSPICION message \(s \) (line 22, Alg. 1) with this information authenticated by \(p_k \). Since channels are reliable, at some moment, \(p_j \) receives \(s \) (in line 17, Alg. 1). Since \(p_i \) is correct, \(s \) is properly signed, formed and justified; from Lemma 1, \(m \notin \text{mistake}_{j}[p_i] \); thus, from line 18, Alg. 1 and lines 15 and 20-26, Alg. 2, \(p_k \) is added to \(\text{extern}_{\text{susp}_{j}}[p_i][m].id \) in line 31, Alg. 1 and the affirmation holds.

From the above conditions, from \(|K_{B}^{i}j| \geq 2f + 1 \) and knowing that there is at most \(f \) faulty processes, it follows that, at some point in time, \(p_j \) executes line 33, Alg. 1 and, from lines 27-28, it adds \(m.id \) to \(\text{intern}_{\text{susp}_{j}}[p_i] \) and \(p_i \) to \(\text{output}_{j} \). Again, from Lemma 1, it follows that \(p_i \) will never be removed from \(\text{output}_{j} \).

Lemma 3 Let \(p_i \) be a commission faulty process (it commits a security failure). Then, at some point in time, every correct process \(p_j \in \Pi \) will permanently include \(p_i \) in its \(\text{output}_{j} \) set.

Proof: A commission failure is produced when \(p_i \) sends a message \(m \) not in accordance with \(\mathcal{A} \). In this case, \(m \) is not well formed or not justified (see Section 3). Notice that, due to the adoption of a broadcast communication pattern, mutant messages are not possible (see Section 4). Moreover, \(m \) is a signed message; otherwise, an undiagnosable faulty had been produced (see Section 3).

Since the network has Byzantine \(f \)-coverage, then there is a path \(P \) between \(p_i \) and each correct process \(p_j \) composed only by correct processes, except for \(p_i \). Let us prove, by induction on the length of \(P \), that, at some point in time, \(p_j \) adds \(\langle p_i, m \rangle \) to \(\text{byzantine}_{j} \) and \(p_i \) to \(\text{output}_{j} \).

(1) If \(|P| = 1 \) (\(P \) has length 1), then \(p_j \in \text{range} \), and, since channels are reliable and \(m \) is signed, \(p_j \) receives \(m \) at some moment in lines 7 or 17, Alg. 1. In both cases, the procedure \(\text{ValidateReceived}() \) (lines 13 and 18, Alg. 1) is invoked. This procedure will attest the non-validity of \(m \) at line 9, Alg. 2. For its turn, the procedure \(\text{AddByzantine}() \) (lines 1-3, Alg. 2) adds \(p_i \) to \(\text{output}_{j} \) and \(\langle p_i, m \rangle \) to \(\text{byzantine}_{j} \), and the affirmation holds.

(2) If \(|P| > 1 \) (\(P \) has length greater than 1). We can assume by induction that the affirmation is true for the path \(P - p_j \) between \(p_i \) and a correct process \(p_k \), such that \(p_k \) and \(p_j \) are neighbors. In this case, \(\langle p_i, m \rangle \) is in \(\text{byzantine}_{k} \) and, at some point in time, \(p_k \) sends a SUSPICION message \(s \) with this information (line 22, Alg. 1); since channels are reliable, at some moment, \(p_j \) receives \(s \) at line 17, Alg. 1. Since \(p_i \) is correct, \(s \) is properly signed, formed and justified; thus, as \(m \) is signed, from line 18, Alg. 1 and lines 15 and 37-39, Alg. 2, \(p_j \) invokes the procedure \(\text{ValidateReceived}() \) and attest the non-validity of \(m \); thus, \(p_i \) is added to \(\text{output}_{j} \) and \(\langle p_i, m \rangle \) to \(\text{byzantine}_{j} \) and the affirmation holds.

From the above conditions and since \(p_j \) only removes \(p_i \) from \(\text{output}_{j} \) if there is no pair \(\langle p_i, - \rangle \) in \(\text{byzantine}_{j} \) (lines 40-42, Alg. 1), \(p_i \) is definitely added to \(\text{output}_{j} \) and the lemma follows.

7.2 Eventual Weak Accuracy

Lemma 4 If \(p_i \) and \(p_j \) are correct processes, then, during the run, \(p_j \) never invokes the procedure \(\text{AddByzantine}(p_i, -) \).

Proof: Notice that the only invocation of \(\text{AddByzantine}() \) is in line 10, Alg. 2 into the procedure \(\text{ValidateReceived}() \). From line 9, knowing that \(p_j \) is correct, this calling only occurs if \(p_i \) has sent a message which was not in good format or not justified; but this is impossible, since \(p_i \) is correct. If a faulty process sends such a message in the place of \(p_i \), then process \(p_j \) will discard it. This happens because channels are reliable and \(p_j \) validates the authentication of every message it receives (lines 7 and 17, Alg. 1 and lines 33 and 37, Alg. 2), and the lemma follows.
Lemma 5 Let p_i be a correct process and m be a message required by A. If every node in range_i receives m from p_i in line 7, Alg. 1, then no correct process $p_j \in \Pi$ will invoke AddInternalSusp(p_i, m).

Proof: The procedure AddInternalSusp() is called in 2 situations: (1) in the task T1, during the reception of messages from A (line 10); (2) in the procedure AddExternalSusp() (line 33), when the process receives more than f external suspicions regarding p_i.

Case 1: From the lemma hypothesis, nodes in range_i receive m from p_i and then add p_i to their rec_from set in line 8, Alg. 1. Thus, they do not invoke AddInternalSusp(p_i, m) in line 10. A process p_j out of range_i cannot receive messages directly from p_i, thus, it will never add p_i to known$_j$ (lines 6-8, Alg. 2); thus, it will never invoke AddInternalSusp(p_i, m) in line 10. Both situations confirm Case 1.

Case 2: Notice that AddExternalSusp() is only invoked in lines 23 and 29 of Algorithm 2. Since a correct process only updates its externSusp set on the execution of AddExternalSusp(), every external suspicion regarding a correct process was firstly generated as an internal suspicion (see lines 22 and 28, Alg. 1). From the same argument of Case (1), a correct process p_j never adds m.id to internSusp$_j$[p$_i$] on the execution of task T1. If a Byzantine process p_k adds p_j to externSusp$_j$[p$_i$][m.id], then a correct process will not adopt this suspicion since the authentication of the message is verified in line 21, Alg. 2. A faulty process p_j can otherwise add m.id to internSusp$_j$[p$_i$] and sign this information. Nonetheless, there are at most f faulty processes and the predicate in line 32, Alg. 2 is never satisfied. Thus, no correct process will invoke AddInternalSusp(p_i, m) in line 33, Alg. 1. The lemma thus follows.

Lemma 6 Let p_i be a correct process. If there is a message m and a correct process p_j such that m.id \in internSusp$_j$[p$_i$] during the run, then, at some point in the future, process p_j will invoke AddMistake(p_i, m).

Proof: Two cases are possible.

Case 1: Process $p_j \in$ range$_i$. Since p_i is correct, at some point, p_j receives m from p_i (properly signed, formed and justified) (line 17, Alg. 1). From the lemma hypothesis, m.id \in internSusp$_j$[p$_i$], thus, from lines 18, Alg. 1 and lines 9 and 12, Alg. 2, since p_i is correct, p_j will call AddMistake(p_i, m) in line 13, Alg. 2.

Case 2: Process $p_j \notin$ range$_i$. By a similar argument used in Lemma 5, $p_i \notin$ known$_j$. Thus, other correct process $p_k \in$ range$_i$ raises the suspicion; that is, there is a $p_k \in$ range$_i$ such that m.id \in internSusp$_k$[p$_i$]. Since the network has Byzantine f-coverage, then there is a path P between p_k and p_j composed only by correct processes. Let us prove, by induction on the length of P, that, at some point in time, each p_l in P invokes AddMistake(p_i, m), and thus $m \in$ mistak$_j$[p$_i$].

1. If $|P| = 0$ (P has length 0). P has only p_k and for the same argument of Case (1), the affirmation holds.
2. If $|P| > 0$ (P has length greater than 0). We can assume by induction that the affirmation is true for the path $P - p_j$ between p_k and p_l, and that at some moment, $m \in$ mistak$_j$[p$_i$]. Afterwards, p_l broadcast a message SUSPICION s with m properly signed in mistak$_j$[p$_i$]. Since channels are reliable, at some point in the future, p_j receives s in line 17, Alg. 1. Since p_j is correct, s is properly signed, formed and justified. Thus, for the execution of line 18, Alg. 1 and lines 19 and 32-36, Alg. 2, p_j calls ValidateReceived(p_i, m). Since p_i is correct, m is properly signed, formed and justified. Since m was forwarded by p_l, p_j calls AddMistake(p_i, m) in line 13, Alg. 2 (see lines 9 and 12-14) and the affirmation holds. The lemma thus follows.

Lemma 7 Let p_i be a correct process that satisfies ByzRP(p_i). At some point in the future, every correct process $p_j \in \Pi$ is such that $p_i \notin$ output$_j$.

Proof: From Lemma 4, we can attest that p_i will never be added to output$_j$ in line 2, Alg. 2. From property ByzRP(p_i), there exists a moment t after which every message m required by A in p_i is received by the neighbors of p_i in line 7, Alg. 1. From Lemma 5, we can attest that p_j does not add p_i to output$_j$ in a call to AddInternalSusp(p_i, m). For every message m' required by A before t, it is possible that $m' \in$
But, from Lemma 6, at some point in the future, \(p_j \) calls \(\text{AddMistake}(p_i, m') \); thus, for line 39, Alg. 1, at some point \(\text{intern} _\text{susp}_j[p_i] = \emptyset \). From Lemma 4, there is no pair \(\langle p_i, _ \rangle \) in \(\text{byzantine}_j \); thus, \(p_i \) is removed from \(\text{output}_j \) in line 4, Alg. 1 and the lemma holds.

Theorem 1 Algorithms 1 and 2 implement a Byzantine failure detector of class \(\diamond \mathcal{S}(\text{Byz}, A) \).

Proof: The theorem follows from Lemma 2, 3 and 7 and from the specification of class \(\diamond \mathcal{S}(\text{Byz}, A) \).

8 Conclusion and Future Work

This paper presented a Byzantine failure detector with two innovative characteristics: (i) it is suitable for dynamic distributed systems, i.e., systems with unknown composition, and (ii) it is asynchronous: it does not rely on timers to detect progress failures. To enable the asynchronous failure detection, we conjecture to be necessary that the overlying algorithm is symmetrical, that is, that all nodes exchange messages at every step. One interesting conclusion is that communication through local broadcast, common in wireless networks, simplifies the security management, since the neighbors of a sender have an uniform view of the messages sent. Specifically, the protocol does not have to deal with mutant messages. As a future work, we plan to (i) extend the protocol with mobility management, (ii) implement the protocol for performance evaluation, and (iii) prove (or find a counterexample for) the impossibility of detecting Byzantine failures in an asynchronous manner with \(1 \rightarrow n \) communication.

References

